const std = @import("std"); // Although this function looks imperative, note that its job is to // declaratively construct a build graph that will be executed by an external // runner. pub fn build(b: *std.Build) void { // Standard target options allows the person running `zig build` to choose // what target to build for. Here we do not override the defaults, which // means any target is allowed, and the default is native. Other options // for restricting supported target set are available. const target = b.standardTargetOptions(.{}); // Standard optimization options allow the person running `zig build` to select // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not // set a preferred release mode, allowing the user to decide how to optimize. const optimize = b.standardOptimizeOption(.{}); const lib = b.addStaticLibrary(.{ .name = "mf-zigtools", // In this case the main source file is merely a path, however, in more // complicated build scripts, this could be a generated file. .root_source_file = .{ .path = "src/main.zig" }, .target = target, .optimize = optimize, }); // This declares intent for the library to be installed into the standard // location when the user invokes the "install" step (the default step when // running `zig build`). b.installArtifact(lib); // Creates a step for unit testing. This only builds the test executable // but does not run it. const main_tests = b.addTest(.{ .root_source_file = .{ .path = "src/main.zig" }, .target = target, .optimize = optimize, }); const run_main_tests = b.addRunArtifact(main_tests); // This creates a build step. It will be visible in the `zig build --help` menu, // and can be selected like this: `zig build test` // This will evaluate the `test` step rather than the default, which is "install". const test_step = b.step("test", "Run library tests"); test_step.dependOn(&run_main_tests.step); }