// // Zig has support for IEEE-754 floating-point numbers in these // specific sizes: f16, f32, f64, f128. Floating point literals // may be writen in scientific notation: // // const a1: f32 = 1200.0; // 1,200 // const a2: f32 = 1.2e+3; // 1,200 // const b1: f32 = -500_000.0; // -500,000 // const b2: f32 = -5.0e+5; // -500,000 // // Hex floats can't use the letter 'e' because that's a hex // digit, so we use a 'p' instead: // // const hex: f16 = 0x2A.F7p+3; // Wow, that's arcane! // // Be sure to use a float type that is large enough to store your // value (both in terms of significant digits and scale). // Rounding may or may not be okay, but numbers which are too // large or too small become inf or -inf (positive or negative // infinity)! // // const pi: f16 = 3.1415926535; // rounds to 3.140625 // const av: f16 = 6.02214076e+23; // Avogadro's inf(inity)! // // A float literal has a decimal point. When performing math // operations with numeric literals, ensure the types match. Zig // does not perform unsafe type coercions behind your back: // // var foo: f16 = 13.5 * 5; // ERROR! // var foo: f16 = 13.5 * 5.0; // No problem, both are floats // // Please fix the two float problems with this program and // display the result as a whole number. const print = @import("std").debug.print; pub fn main() void { // The approximate weight of the Space Shuttle upon liftoff // (including boosters and fuel tank) was 2,200 tons. // // We'll convert this weight from tons to kilograms at a // conversion of 907.18kg to the ton. var shuttle_weight: f32 = 907.18 * 2200.0; // By default, float values are formatted in scientific // notation. Try experimenting with '{d}' and '{d:.3}' to see // how decimal formatting works. print("Shuttle liftoff weight: {d:.0}kg\n", .{shuttle_weight}); } // Floating further: // // As an example, Zig's f16 is a IEEE 754 "half-precision" binary // floating-point format ("binary16"), which is stored in memory // like so: // // 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 // | |-------| |-----------------| // | exponent significand // | // sign // // This example is the decimal number 3.140625, which happens to // be the closest representation of Pi we can make with an f16 // due to the way IEEE-754 floating points store digits: // // * Sign bit 0 makes the number positive. // * Exponent bits 10000 are a scale of 16. // * Significand bits 1001001000 are the decimal value 584. // // IEEE-754 saves space by modifying these values: the value // 01111 is always subtracted from the exponent bits (in our // case, 10000 - 01111 = 1, so our exponent is 2^1) and our // significand digits become the decimal value _after_ an // implicit 1 (so 1.1001001000 or 1.5703125 in decimal)! This // gives us: // // 2^1 * 1.5703125 = 3.140625 // // Feel free to forget these implementation details immediately. // The important thing to know is that floating point numbers are // great at storing big and small values (f64 lets you work with // numbers on the scale of the number of atoms in the universe), // but digits may be rounded, leading to results which are less // precise than integers. // // Fun fact: sometimes you'll see the significand labeled as a // "mantissa" but Donald E. Knuth says not to do that. // // C compatibility fact: There is also a Zig floating point type // specifically for working with C ABIs called c_longdouble.